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Abstract. We present an algorithm for finding approximate global solutions to quadratically con- 
strained quadratic programming problems. The method is based on outer approximation (lineariza- 
tion) and branch and bound with linear programming subproblems. When the feasible set is non- 
convex, the infinite process can be terminated with an approximate (possibly infeasible) optimal 
solution. We provide error bounds that can be used to ensure stopping within a prespecified feasibility 
tolerance. A numerical example illustrates the procedure. Computational experiments with an imple- 
mentation of the procedure are reported on bilinearly constrained test problems with up to sixteen 
decision variables and eight constraints. 
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1. Introduction 

In the petrochemical industry, feedstock streams are pooled to yield a blended 
product whose qualities are quadratic functions of the component streams. The 
problem of determining how much of each type of feedstock to purchase from 
each source and what the composition of the feedstocks should be for the most 
profitable blends can be expressed as a mathematical programming problem with 
a linear objective function and quadratic constraints [11, 13, 27]. Placement and 
layout problems in integrated circuit design involve quadratic restrictions that are 
usually satisfied by heuristic techniques [5, 7]. In recent years, the economics 
of manufacturing and production has led to an increase in the modularization of 
product subassemblies [2, 14, 22]. The modular design problem, in its simplest 
form, involves indefinite quadratic functions in the constraints [14, 22, 2, 9]. 
Other applications that give rise to mathematical models with quadratic constraints 
include chance-constrained programming [25], production planning [22], design 

* This research was supported in part by National Science Foundation Grant DDM-91-14489. 



216 E A. AL-KHAYYAL ET AL. 

of heat exchanger networks [27], minimax location problems [17], and certain 
stochastic games [!0]. 

Recently, several algorithms for finding global solutions to special cases have 
been proposed. Notable among them are the papers of Foulds et al. [ 13], Sherali and 
Tuncbilek [23], and Visweswaran and Floudas [26]. Foulds et al. [13] extend the 
method of AI-Khayyal and Falk [3] for linearly constrained bilinear programs to 
handle bilinear constraints along the lines outlined in A1-Khayyal [2]. The approach 
is based on convex underestimation of all nonlinear terms over a (hyper)rectangular 
domain, and successively tightening the underestimates by partitioning the domain. 
Linear programming subproblems are solved with branch-and-bound employed for 
the bookkeeping. Sherali and Tuncbilek [23] consider general nonconvex polyno- 
mial programming problems and generate implied constraints, from the hyper- 
rectangular set bounding the variables, that involve polynomial terms which are 
linearized (together with the original polynomial terms in the problem) by defining 
a new variable for each distinct nonlinear term. The resulting linear programming 
relaxation provides the bounds in a branch-and-bound setting where successive par- 
titions of the hyperrectangle produce tighter bounds over the subsets of the original 
feasible region. In contrast, Floudas and Visweswaran [26, 27] employ generalized 
Benders decomposition and solve the subproblems by a dualization and relaxation 
scheme. The method is designed to handle general nonlinear functions, but the 
subproblems are considerably more tractable in the quadratic case. 

In this paper, we will consider the general quadratic program (GQP): 

min xTQ~ + cOx 

s.t. xTQpx +cPx <_ b p p =  1 , 2 , . . . , P  

Ax < d  

~ < x < L  

where Q O . . . ,  QP are real n • n matrices (possibly indefinite), cO,..., c P, ~, L E 
~n with ~. < L, b l , . . . ,  b P E ~ ,  A is areal m • n matrix, and d E ~m. We denote 
S = {x E iR ~" Ax  <_ d}, ft = {x E ~ "  ~ < x < L} and f ( x )  = xTQ~ + cOx. 
We assume the feasible set of GQP is nonempty so that an optimal solution exists. 

Early global optimization procedures for this problem considered the special 
case when x is restricted to be binary (see [15] and references therein). For the case 
of no quadratic constraints (P = 0), Erenguc and Benson [8] and Pardalos and 
Rosen [20] decompose the objective function into separable form by determining 
all eigenvalues and eigenvectors of Q0, and then solve the (transformed) separable 
problem by branch and bound. Clearly, this approach cannot be extended to the 
case where P > 1. 

In this paper, we extend the method of Al-Khayyal and Larsen [4] for the case 
P = 0 to the case P >_ 1 by incorporating upper as well as lower linearizations of 
all bilinear terms. Our algorithm is closely related to (and independent of) the work 
of Foulds et al. [ 13] and can be interpreted as a special case of the method proposed 
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by Sherali and Tuncbilek [23]. A linear programming relaxation of GQP is derived 
in Section 2 which is used to calculate a lower bound on the optimal objective value 
of GQP for a given fL This subproblem is used in Section 3 to develop a branch 
and bound algorithm for finding a global solution of GQE As in the earlier work, 
branching amounts to subdividing f~ into smaller hyperrectangles. We include a 
concise proof that any convergent subsequence of points generated by the algorithm 
will converge to an optimal solution. In Section 4, a small numerical example is 
solved to illustrate the procedure. Section 5 reports on results of computational 
experiments using an implementation of the algorithm. 

2. A Linear Programming Relaxation 

In this section we construct a linear programming relaxation of GQP. First, we 
rewrite it as a generalized bilinear program GBP. 

min xTy 0 + cOx 

s.t. xT y p + cP x <_ b p 

yP = Qpx 

rap ~_ yP < M p 

x E S N f L  

p =  1 , . . . , P  

p = 0 , . . . , P  

p = 0 , . . . , P  

We have introduced extra variables yP = Qpx for p = 0 , . . . ,  P in order to make 
the objective and the constraints bilinear. The vectors ra p and M p are bounds on 
yP, which are calculated as follows: 

n 

mi p = min{Q~x " x e ~2} = y~min(Q~jgj,QijLj)" pi == O,...,Pl'""n' 
j = l  

n 
E ~j p i = l , . . n ,  

M~ = max{Q~x "x Ef t}  = max(Q gj ,QijLj)  " ' 
j=l p = O , . . . , P  

where Q~ is row i and Q~j is element (i, j )  of matrix Qp.  
It is well known, see AI-Khayyal and Falk [3] and AI-Khayyal [1], that the 

convex envelope of the two dimensional bilinear function 9(x, y) = xy on the 
hyperrectangle {(x, y) E ]~2. ~ _< x < L, m _< y < M} is ~(x, y) = max{gy + 
rex-gin ,  Ly+ M x - L M }  andthat r  y) = min{ gy+ M x - g M ,  L y + m x - L m }  
is the corresponding concave envelope. 

By using this result a linear programming relaxation of GBP is 

rain o + 

j = l  
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s . t .  

( L P G s P )  P > �9 P mPxj  g j m  p 1 , . . .  p O , . . . , P  tj _ ~ yj -~- -- j = , n, = 
P >  P M P x j  L i M  p j = l ,  . p O, P tj  _ L j y j  + - . . , n ,  = . . . ,  
P <  P M P x j  g j M  ff 1 , . . .  p 1 , . . . , P  tj  _ gjyj  + - j =  , n, = 
P~_ . P  P . P tj  L~yj + m j  xj - L j m j  j = l ,  . . . ,  n, p = 1,. . . ,  P 
n 

P b p l, , P E tj + cPx <_ p . . . .  
j----1 
yP = Qpx p = O , . . . , P  

x E S N ~ .  

P f o r j  = 1 , . .  n a n d p  = O, , P  to Here we have used extra variables tj ., . . .  
�9 P Substituting back to the x space P by using the bounds on x~ yj .  a p p r o x i m a t e  x j y j  

by yP = Qpx we reach a linear programming relaxation of  GQP, 

n 

0 m i n  ~ t j  + cOx 

j = l  

s . t .  �9 

( L PaQ P ) t p > P P P _ ~jQ .x + m j x j  - g jm j  

P <  P P P 
_ ejQ .x + Mj xj - gjM  

t j _  
n 

j = l  

x E S n ~ .  

j =  1 , . . . , n ,  p = O , . . . , P  

j =  l , . . . , n ,  p = O , . . . , P  
j =  l , . . . , n , p =  l , . . . , P  
j =  1 , . . . , n ,  p =  1 , . . . , P  

p =  1 , . . . , P  

For  brevity, we will define (Tf2)P(x) = max{gjQPx + mPxj  - g j m  p, L j Q  px + 

M p x j  - L j M ~ } ,  j = 1 , . . . , n , p  = 0 , . . . , P  and ( r  = min{eiQ~x + 

M P , , . . _ g . M  p. L . . O P x q - m P . x - . - L : m P . ] . , 4  = 1. , n , p =  1, . . , P .  W e h a v e  
sr' t j '~ 3 3 '  .J '~3 - - 3  J. 3 3 j  a . ~]'" - , . ,"  . . . . .  . 
put fl as a subscript on the tunctlons to emphasize that the oasis mr  me aenvat lon  

of these functions is the set ~. We will put 

n 

= , P  

j = l  
n 

~b~(x) = ~--~(~ba)P(x),p = 1 , . . . , P .  
j = l  

and 

We can now concisely write LPGQp a s  

min ~ ~  + cOx 
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s . t .  

(RELGQp) P < _ t j  _ 
n 

P bp t j  -t- cP x 

j = l  
x E S N ~ 2 .  

j = l , . . . , n , p = l , . . . , P  

p =  1 , . . . , P  

An important result for our convergence proof is the following. 

LEMMA 1. For any p, max{r  - qua(x) �9 x E a}  < 0.5(L - t)IQPI(L - t), 
where IQp[ is the matrix with entries [QPj[. 

Proof. See the proof of Lemma 1 in A1-Khayyal and Larsen [4]. q.e.d. 

We will use this lemma as a guideline for establishing a consistent (see Horst [18]) 
branching rule for the branch and bound algorithm that is developed in the next 
section. 

REMARK. The linear programming relaxation is derived as RELaQp for nota- 
tional simplicity and ease of presentation. We note that this formulation allows for 
two t-variables to be scaled values of the same quantity. For example, if y~ = axj 

and y~ p' =/3xj,  then tip = ax~ and tj p '  - -  ~X 2. In practice of course, we would let 

tj p = xj 2 and replace xjy~ with a~t~ and xjy p' with/3t~. Procedures for reductions 
with the fewest additonal variables are proposed by Hansen and Jaumard [16]. 

3. A Branch and Bound Algorithm 

We now state a standard branch and bound algorithm for solving GQP (see Horst 
and Tuy [ 19] for the theory and framework of general branch and bound algorithms). 
The branching is based on subdividing f~ into smaller hyperrectangles. To each 
node q, we assign a value 2q, which is a lower bound on f (x )  for any z feasible 
in GQP and belonging to f/q, where ~2 q is the relevant subset of fL We always 
extract the node q with the smallest 5q value and then solve the corresponding 
LP relaxation RELaQp with f~ replaced by f~q. If the optimal solution of the 
LP relaxation is feasible in GQP, we assign it and its f ( . )  value to (x*, z*): the 
current best feasible solution and its criteria value. Instead of writing ( ~ q ) ~  (.) and 
(~bf~q)~(.), we will use the simpler notation (qoq)~(.) and (~pq)P(.) in the remainder 

of the sequel. We will also put f~ = xTQ~ The branch and bound algorithm 
is as follows. 

1. Initialize ft ~ := f~, z* := oc, 20 := - o c ,  L I S T  := {(ft ~ 20)} and k := 0. 
2. If L I S T  = 0, STOP, x* is optimal in (GQP). 
3. Choose and remove instance (f~q, 2 q) from LIST with the smallest 5q value. 

Solve the linear program 
v(q) = min(qoq)~ + cOx 
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. 

. 

s , t .  

(RELqGQp) P < (~bq)P(x) j =  l, . n, p =  l, P __ t j  _ . .  , . . . ,  

n 
p ~-'~ t j + cP x ~ b p p = 1, . . . , P 

j = l  
x E S~N f~q. 

K RELqGQp is infeasible go to Step 2. Else denote (x q, t q) the optimal solution 
of RELqGQp. J 
(a) If v(q) _> z'J, go to Step 2. 
(b) If x q is not feasible in GQP, go to Step 5. 
(c) (x q is feasible in GQP and v(q) < z*) 
If f ( x  q) < Z*, update z* : =  f ( x q ) ,  X* := X q and delete from LIST all 
instances with 5 p _> z*. 
If f~ > (~q)O(xq) go to Step 5, else go to Step 2. 
Subdivide ftq into twohyperrectangles ft k+l = {x E ftq �9 s < x < L k+l } 
and ~-~k+2 = {X E ~~q : ~k+2 < X < L k+2} such that f~q = f~k+T U ~k+2  and 
ri(f~ k+l) fq ri(O k+2) = 0. 
Let 2 r := v (q), r = k + 1, k + 2. Append to L.IST(~2 r, ~ ) ,  r = k + 1, k + 2, 
and put k :--' k + 2. Go to Step 3. 

For clarification purposes we only branch the father hyperrectangle f2q into two 
hyperrectangles. It is of course obvious that, in Step 5, we can branch ftq into as 
many hyperrectangles as we wish. 

The branching in Step 5 must be consistent. That is, when the algorithm gener- 
ates a nested sequence of hyperrectangles {f~q } we must have 

max{(L q -  ~.q)IQPI(L q " l q ) ' p  = 0 , . . . , P }  .L 0 f o r q  ~ r 

This is of course in order to make the approximation of the quadratic functions in 
GQP gradually finer. 

It is quite obvious that, when finite, the algorithm will terminate with an opti- 
mal solution. For the infinite case we state and prove the following convergence 
theorem. 

THEOREM 1. Assume GQP has an optimal solution. Let { x q, t q } be the sequence 
of LP optimal solutions generated in Step 3 of the algorithm. Then the limit point 
of any convergent subsequence of {xq } will be optimal for GQP. 

Proof. Denote by v(GQP) the optimal value of GQP. Because we always choose 
the instances where ~ is smallest, we have that {~q} is a nondecreasing sequence 
of points bounded above by v(GQP). After eventually making a subsequence of 
the {f~q, 5q}, the hyperrectangles will be nested, that is ~q+l C ~"~q Vq. 

Due to Lemma 1 

0 <__ fO(xq)  -- (qOq)O(x q) <__ ( r 1 7 6  - 

< 0.5(Lq- q)lQ~ ) 
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so the consistency property secures 

lim ( f~ - (~2q)~ ) = O. 
q --.+ o o  

In a similar fashion we conclude from 

_< 

< -q~Px q < (r q) V(j ,p ,q)  _ x j u g j  _ 

that 

x j Q j x  ) 0 V(j,p).  

Thus, for any convergent subsequence of {xq, t q } with limit point (~, t~, we have 
that ~" is feasible in GQP, implying that fo(~) + cO~ > v(GQP) .  It only remains 
to show that ~ is optimal in GQP. Here we use that, because we are looking at a 
path in the branch and bound tree of nested hyperrectangles, we have 

v(q) = 2q+1 <_ v (GQP) .  

Because f~  = ~~ converges to 0, this implies that f~176 <_ v (GQP) .  
Thus .~ is optimal in GQP. q.e.d. 

The proof can be regarded as a realization of the general proof scheme in Horst 
[ 18] for showing convergence to a global optimum in a branch and bound context. 

It is essential and not just a good heuristic, that we, in Step 3, choose the 
instance with the smallest lower bound 5 q. Violating this rule could produce an 
infinite sequence of infeasible points {x q } converging to some point which is 
feasible but not optimal in GQP. 

If we are satisfied with an approximate solution both with respect to optimality 
and feasibility, we could stop further branching when 

max{(L q -eq)IQPI(L q - e q ) :  p = 0 , . . . , P }  _< E 

for some presepecified tolerance e. 
In the following section we will demonstrate the performance of the algorithm 

on a small numerical example, 

4. An Example 

The example we considered is the following 

1 2 x~ 
min[xl'x2] [ - 1 - 1 ]  [ : ~ ]  +[1 '1]  [x2] 

8 . t .  

(E) [xl,x2] [ - 1  1 

Xl+X2 _<4 
0_<x1_<4 
0_<x2_<4. 
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| 
x ' 7 "  " 

,</%:, "x8 
t 

Fig. 1. Branch and bound tree for example. 

E A. AL-KHAYYAL ET AL. 

The optimal solution of E is (a:l, a:2) = (0, 30'5). 
Using the branch and bound algorithm we grew the tree shown in Figure 1. The 

corresponding node information is given in Table 1. In the third column x q is the 
optimal a: solution of the LP relaxation and if this relaxation is infeasible we put in 
an asterisk. In the last column we have calculated, when a:q is feasible in GQP, its 
objective function value f (a: q). 

We stopped the iteration process by concluding that X 13 = ( 0 ;  1.75) is an 
approximate optimal solution. 

The reader can see that we accepted the solution of node 8 as feasible although 
this is not strictly true. However, if we had created two sons of node 8, this would 
not have affected the outcome of the algorithm. Due to the rule of always taking the 
instance with the smallest lower bound, we would still have ended at node 13 (and 
its successors) and would never have examined the sons of node 8. This clarifies 
the remark made after the proof of Theorem 1. 
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TABLE I. Solution of example 

q gq, L q x q v(q) f ( x  q) 

0 (0, 0);(4, 4) (2, 2) - 1 2  
1 (0, 0);(4, 2) (1.56, 1.66) -3 .22  
2 (0, 2);(4, 4) * 
3 (0, 0);(2, 2) (0.69, 1, 62) -2 .31  
4 (2, 0);(4, 2) (2, 0) 6 6 
5 (0, 0);(2, 1) (0, 0) 0 0 
6 (0, 1);(2, 2) (0, 1.86) -1 .71  
7 (0, 1);(1, 2) (0, 1.82) -1 .64  
8 (1, 1);(2, 2) (1, 1.13) 2.88 >2.88 
9 (0, 1);(1.1.5) (0, 1.5) -0 .75  -0 .75  

10 (0, 1.5);(1, 2) (0, 1.75) -1 .38  
11 (0, 1.5);(0.5, 2) (0, 1.75) - 1.38 
12 (0.5, 1.5);(1, 2) * 
13 (0, 1.5);(0.5, 1.75) (0, 1.74) -1 .28  -1 .29  
14 (0, 1.75);(0.5, 2) * 
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5. Computational Results 

To test the computational behavior of the algorithm, problems of varying sizes were 
randomly generated and solved. The test problems had bilinear objective functions 
and constraints, and are special cases of (GQP) with 

x = 

0 p =  O, 1 , . . . , P  

p p c p = (c~,Cz) p = O, 1 , . . . , P  

A = O  

d = O  

gi : 0 i :  1 , 2 , . . . , n  

Li = 20 i = 1 , 2 , . . . , n .  

All problems had an even number n of variables, with w, z E R n/2. Hence, the 
problems may be written in the following form: 

Min wT BO z + cOw + cO z 

subject to wTBPz  + e~w + e~z < b p p = 1 , 2 , . . . , P  

0 _< wi _< 20 i = 1 , . . . , n / 2  

0 <_ zi <_ 20 i = 1 , . . . , n / 2 .  

All problem parameters were integers randomly generated according to the follow- 
ing specifications. Each objective function coefficient e ~ and constraint coefficient 
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P is an integer between - 1 0  and 10. Likewise each entry in B ~ is an integer c i 

between - 1 0  and 10. Matrices B p, p = 1 , 2 , . . . ,  P ,  were produced by random- 
ly selecting half of the entries in each row to be 0 and randomly generating an 
integer between - 1 0  and 10 for the other entries in that row. Hence, the matrix 
density of B p, p = 1 , 2 , . . . ,  P ,  was taken to be 50 percent. Thus, each matrix 
Q p , p  = 1 , 2 , . . . ,  P ,  has density of 25 percent. The number of constraints P was 
set equal to half the total number of variables in each problem. For each constraint, 
the right-hand-side constant b p was a randomly generated integer between - 1 0 0  
and 100. The above specifications were selected to yield nontrivial, numerically 
stable problems having active nonlinear constraints. 

Although the program used to solve the test problems closely follows the algo- 
rithm presented earlier, a few modifications were introduced for computational 
purposes. In particular, linearizations with the fewest number of variables were 
constructed in accordance with the Remark following Lemma 1. As in the algo- 
rithm, the program always chooses the branch with the best lower bound and creates 
and solves a linear relaxation for that branch. Branching is done in a similar, but not 
identical fashion as in the example of Section 4. The program seeks to reduce the 
maximum difference between linear variables tij  and the product wiz j  which they 
replace. Given that some variable tij has the maximum difference I tij  - wiz j  l, 
either wi or zj will be chosen as the branching variable to reduce that difference. 
The choice between wi and zj is based on the fact that the convex envelope of 
the function wiz j  is tight at the boundaries of the rectangle under consideration. If 
either variable is at its upper or lower bound, then I tij  - Wizj 1= 0. This difference 
increases when both wi and zj move away from their respective bounds. Therefore, 
the variable chosen as the branching variable is the one which is farthest from either 
of its bounds at the solution of the linear relaxation. As in the example problem, 
the region of the branching variable is divided in half to form two subproblems. 

As noted in Section 3, to achieve an approximate solution, branching may be 
stopped when an appropriate e convergence criterion is satisfied. In the program, 
this criterion is given by the maximum difference between I tij  - w lz j  l, over all 
i = 1 , . . . ,  n / 2 ,  a n d j  = 1 , . . . ,  n /2 ,  being less than e = 0.00005. This criterion is 
consistent with the conditions required for the convergence proof, since 

m.ax l tij  = wiz j  I< e => ~ - ~ ( b ~ j t i j - b P j w i z j )  <_ ape p =  1 , . . . , P  
z3 i j 

(where bid is the entry in row i and column j of matrix B p and o~p is a constant 
related to the number of variables and the magnitude of the coefficients of the 
bilinear terms in constraint p). This is similar to the condition necessary for the 
convergence proof, which relies on the difference between the original quadratic 
constraint terms xTQpx  for each constraint p and their linearized replacement terms 
approaching zero. For the test problems, there are no more than 32 quadratic terms 
for any constraint and each coefficient has an absolute value of 10 or less. Hence, 
when the e convergence criterion is satisfied, the maximum possible constraint 
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TABLE II. Computational performance of algorithm on test prob- 
lems 

n LPs solved CPU time (min) Avg time (min) per LP 

4 17 0.0102 0.0002 

4 1 0.0015 0.0003 

4 1 0.0013 0.0003 

4 1 0.0015 0.0003 

4 1 0.0015 0.0003 

4 7 0.0042 0.0002 

4 1 0.0015 0.0003 

4 97 0.0573 0.0003 

4 65 0.0380 0.0003 

4 1 0.0015 0.0005 

8 398 5.091 0.0120 

8 131 1.748 0.0125 

8 65 0.895 0.0130 

8 85 1.040 0.0112 

8 111 1.272 0.0107 

8 39 0.390 0.0094 

8 10 0.125 0.0119 

8 133 2.025 0.0147 

8 1 0.012 0.0102 

8 15 0.166 0.0105 

12 37 4.961 0.1331 

12 187 29.656 0.1579 

12 52 7.150 0.1369 

12 39 6.103 0.1559 

12 127 17.015 0.1334 

12 129 19.539 0.1508 

12 1187 145.157 0.1216 

12 200 23.866 0.1187 

12 2188 201.795 0.0916 

12 140 17.699 0.1257 

16 309 219.906 0.7102 

16 2585 2415.808 0.9329 

16 139 122.540 0.8800 

16 174 133.121 0.7636 

16 341 246.044 0.7201 

16 113 86.388 0.7629 

16 171 132.991 0.7760 

16 310 234.248 0.7539 

16 2659 2667.208 1.0014 

16 31 24.772 0.7971 
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TABLE III. Average growth in computational effort for ten test problems 

n Avg # Min # Max # Std Dev of Avg CPU time Avg CPU time 
of LPs of LPs req of LPs req # of LPs per problem (min) per LP (min) 

4 19.2 1 97 33.8 0.0119 0.0003 
8 98.8 1 398 116.1 1.2763 0.0121 

12 428.6 37 2188 706.5 47.2940 0.1097 

16 683.2 31 2659 1026.6 628.301 0.9180 

violation is bounded above by a constant times 10 -2, where the constant depends 
on the exact magnitude of the constraint coefficients and is close to 1 for n = 16 
(and decreases with n). In practice, constraints would be violated by much less 
than 10 -2 if, at the solution to the LP relaxation, many original variables are at 
their bounds (where the linearization is tight) and the few small signed differences 
(b~jtij - b~j w i z j )  sum to nearly zero. This behavior was observed in all of the test 
problems in our experiments. 

To ensure that no constraint was significantly violated, LP solutions (w*, z*, t*) 
were considered feasible to the original problem only when solution (w*, z*) 
violated no constraint by more than 0.00005. Similiarly, with each I tij - w i z j  I<_ e, 
the linear underestimate is within/3 e of the objective function (i.e. f0 (x) - ~2~ _< 
/3e), where once again 3 is a constant related to the number of variables and the 
magnitude of the objective function coefficients. With coefficients of magnitude 10 
or less and with no more than ( 1 n)2 linear terms t i j ,  this difference was bounded 

above by a constant of order of magnitude 10 .3 for smaller values of n and 10 .2 
for larger values of n and in practice was very small. 

Ten test problems were generated for each n = 4, 8, 12, and 16. The primary 
result of interest was the number of linear programs solved in the course of finding 
the global solution to the original bilinear program. To put this number in a better 
perspective, we also recorded the time required to solve all of these linear pro- 
grams. Each LP was solved separately, using no information generated at previous 
branches. Hence, these run-times do not reflect any improvements which could 
be achieved by taking advantage of the similarities between related branches in 
solving the new LPs. The tests were run on a SUN Sparc station IPC, using a rudi- 
mentary simplex code found in the book Numerical Recipes in C [21]. While faster 
simplex codes can be used, our primary interest was to investigate the increase in 
the number of LPs solved and in the computer times required to solve them as a 
function of n. 

Results are exhibited in the tables below. Table II shows the number of linear 
programs and the CPU time required for each individual problem. The final column 
shows the total CPU time spent solving the LPs divided by the number of LPs 
solved. Table III shows the average number of LP subproblems solved for different 
values of n. To get an idea of the variance among problems with the same number 
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of variables, the fewest number of LPs required, the most LPs required, and the 
standard deviation of the number of LPs required is also given. The average 
computer time required to solve each problem is also reported. The final column 
was derived by extracting the computer time spent executing the simplex method 
(from total run time) for the set of test problems and dividing this by the total number 
of LPs solved. This shows the growth in the average computer time required to 
solve an LP as n increases. 

Based on the above statistics, this algorithm is a reasonable approach for solving 
bilinearly constrained quadratic problems of up to 12 variables. As can be seen in 
Figure 2, the computer time required to solve these quadratic programs increas- 
es dramatically with n. Two mathematical models were considered as possible 
methods of quantifying this relationship. One model considered a polynomial rela- 
tionship between run-time t and n so that t = el nO2. Taking the natural logarithm of 
each side produces the equation In t = in cl + c21n n. Hence, this model would seem 
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appropriate if a nearly linear relationship exists between In t and In n. This relation- 
ship is pictured in Figure 3 and does in fact appear linear. Linear regression was 
used to find constants Cl and c2 and produced the equation t = 1.79 • 1 0 - 7 n  7"826. 

From the figure, it is clear that the correlation between In n and In t is very high and 
accounts for most of the variance between data points. In fact, the r 2 statistic for 
this regression model is 99.42 percent. The other model considered an exponential 
relationship t = ele c2n. Taking the natural logarithm of both sides in this case 
produces the equation In t = In cl + czn. Thus, a linear relationship between n and 
In t would suggest that this model is appropriate. Figure 4 shows this relationship, 
for which a linear fit could also be postulated. Again, linear regression was used to 
produce the equation t = 5.341 x 1 0 - 4 e  0"906n. Once again, the correlation between 
In t and n is obvious and a very high r 2 value of 98.36 percent is achieved by the 
regression model. 
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Of course, both regression models are somewhat limited by the lack of distinct 
data points. Additional data points (especially for n > 16) would be helpful in 
specifying which model more accurately represents the actual relationship between 
t and n. As n increases, the two models diverge rapidly. This is pictured graphically 
in Figure 5, which shows the predicted increase in In t as a function of n using 
both the polynomial and exponential models. As expected, the models yield similar 
predicted values of lnt  for n between 4 and 16, but for n > 16, the exponential 
model predicts increasingly longer run-times. For example, when n = 30, the 
polynomial model would predict an average CPU time of 64,984 minutes (45 
days). The exponential model yields a predicted value of 342,257,019 minutes 
(651 years). Whichever model is used, it is clear that as n gets above 12, this 
technique rapidly loses its computational attractiveness. 

Finding faster methods to solve, or at least bound, the LPs produced by the 
algorithm could significantly decrease the run-time. The solutions to the larger 
problems tend to have an increasing percentage of variables at either their upper 
or lower bounds. This tendancy serves to keep the number of LPs which must be 
solved fairly manageable for most problems up to 16 variables. However, nonlinear 
programming techniques which serve to accelerate, convergence in regions which 
contain good solutions hold promise as a method of further decreasing the number 
of LPs which must be solved. The global convergence property of the algorithm 
provides a strong motivation for continuing work to improve the computational 
behavior of the algorithm for large values of n. 

6. Concluding Remarks 

In this paper we have developed a branch and bound algorithm for solving GQP 
and have shown convergence to a global optimum. Because in each node we solve 
an LP relaxation of the true problem, the algorithm can be regarded as an outer 
approximation scheme combined with branch and bound. In this respect it is not 
surprising that we can only show infinite convergence to a global optimum. So a 
realistic application of the algorithm is to accept an approximate optimal solution, 
which could be slightly infeasible. An interesting subject, which to our knowledge 
has not been reported in the literature, is then how to transform an approximate 
infeasible optimal solution to an approximate feasible optimal solution. 
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